WIPP the MIPP experiment and its application to neutrino beam simulations

Andrew Godley

on behalf of the MIPP Collaboration:

Colorado, Fermilab, Harvard, IIT, Iowa, Indiana, Livermore, Michigan, South Carolina, Virginia

APS Dallas, TX April 2006

MIPP overview

- Measure particle production off various nuclei
- Incoming beam of π[±], K[±] and p[±] from 5 to 80 GeV/c and primary p beam from the Main Injector
- Large acceptance spectrometer including a Time Projection Chamber
- Example physics topics
 - Hadronic fragmentation test scaling law of particle fragmentation
 - □ Light meson spectroscopy
 - □ Nuclear scaling, strangeness production
 - □ Proton radiography
 - □ Neutrino physics more later

The MIPP Spectrometer

Application to neutrino experiments

Distribution of hadrons decaying to produce neutrinos at the MINOS near and far dectors

- Hadron production is largest uncertainty in neutrino flux
- Existing hadron production
 - Measure production from NuMI
 - measurement as input to NuMI beam simulator (replace Fluka
- Also thin C, Al and Be targets
- Combine thin and thick target data to benchmark cascade calculations in thick targets

Data collected

- Ran throughout 2005 and first two months of 2006
- 5 thin targets Be, C, AI, Bi, U
- 7 million Liquid Hydrogen events
- 1.78 million events on the NuMI target
- 14 million events with no TPC (faster data rate) for Kaon mass measurement from RICH ring diameter
- First reconstruction pass completed – DST produced for analyses

Data Summary 27 February 2006			Acquired Data by Target and Beam Energy Number of events, x 10 ⁶									
Target			E GeV/c									
z	Element	Trigger Mix	5	20	35	40	55	60	65	85	120	Total
0	Empty ¹	Normal		0.10	0.14			0.52			0.25	1.01
	K Mass ²	No Int.		'		5.48	0.50	7.39	0.96			14.33
	Empty LH ¹	Normal		0.30				0.61		0.31		7.08
1	LH	Normal	0.21	1.94				1.98		1.73		
4	Ве	p only									1.08	1.75
		Normal			0.10			0.56				1.73
6	C	Mixed						0.21				1.33
	C 2%	Mixed		0.39				0.26			0.47	1.55
	NuMI	p only									1.78	1.78
13	Al	Normal			0.10							0.10
83	Bi	p only									1.05	2.83
		Normal			0.52			1.26				2.03
92	U	Normal						1.18				1.18
Total			0.21	2.73	0.86	5.48	0.50	13.97	0.96	2.04	4.63	31.38

Beam particle ID and trigger

- Need to tag incoming particle, use two upstream Cerenkov detectors
- >85% purity (tested with RICH)
- Can use beam TOF for 5 GeV/c
- Added small scintillator trigger behind thin targets
- Combined with multiplicity in first drift chamber
- Purpose built scintillator trigger for NuMI target

TPC and tracking

- Raw TPC data, form clusters of hits in Z slices, then form tracks and vertex
- 6 wire chambers for high momentum tracking

-20-

*(49) 20

Particle ID

- TPC dE/dx already shows good Pi/K/P separation
- RICH particle ID also in good condition

RICH Ring Radii

NuMI target data

- Beam aligned Δx=0.002 cm
 Δy=0.051 cm
- Total positive tracks, Pions and Kaons identified by the RICH

NuMI Target Radiograph

y (cm)

Al Pipe

Cooling

Early MIPP Physics - HBT

- HBT effect, pions preferentially emitted together
 - Plot transverse momentum between a pion and all other pions in event -Dependent
 - Compare to transverse momentum from pions in different events Independent
 - □ Look for excess at low p_T in ratio of Dependent/Independent
- Seen in MIPP with Kaons and Protons too with broader peaks
- Calculate radius of particle interaction from interference peak

Gamov correction for charge repulsion required

MIPP upgrade

- Hard at work finishing reconstruction and analysing data but also working towards upgrade of MIPP
- Fifty fold increase in data taking rate
- Upgraded hardware
 - □ TPC readout electronics limit data taking use ALICE chips
 - □ JGG magnet repair
 - Larger veto wall
 - Beamline optics and shielding
- Physics
 - More NuMI target statistics, NOvA target and others
 - Pi and K production cross sections on liquid nitrogen for atmospheric neutrinos
 - □ Higher statistics for hadron shower simulations ILC
- Limiting factor is manpower, new collaborators welcome!